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Abstract A long-wavelength model of polar optical modes coupling the vibration amplitude 
U (the relative displacement vector) and the elecvostatic palential p leads to a system of coupled 
differential equations. This system is here solved for a quantum well without approximations 
and with simultaneous satisfaction of mechanical and elecmstatic matching boundary conditions. 
Explicit solutions for U and (0 are given, and the resulting eigenmodes for GaAs-based quantum 
wells are studied in detail. The model gives modes with a mixed character describing 
the coupling between U and p. Thus one single model yields confined quasi-longitudinal 
(strictly longitudinal for in-plane wavelength vector K = 0). confined'quasi-transverse (shictly 
transverse for K = 0) and interface .modes. The dynamical smcture. speclral strength and 
spatial dependence of the relevant amplitudes are studied in detail. 'rhe results are in good 
agreement with available Raman experimental data and have all the basic features present 
microscopic calculations. Some comments are made on the limitations of purely dielectric or 
purely mechanical models. 

1. Introduction 

Various problems of physical interest involving electron-polar-optical-phonon coupling in 
quantum wells and superlattices [1-3] require a reliable description of the polar optical 
modes in such structures. Lattice dynamics calculations based on fairly reliable microscopic 
models have been reported [4, 51. Actually, available experimental data pertain to the long- 
wavelength limit and in fact, due to the characteristics of the Fmhlich-type interaction, real 
electron-phonon scattering-important as a mobility limiting factor-and polaron effects are 
also dominated by the long-wavelength limit. Hence, a substantial interest in obtaining a 
reasonable description in terms of a phenomenological long-wavelength-i.e. continuous- 
model has originated an abundant literature on the subject. Several theoretical proposals 
have &en put forward [5-151 which represent widely different viewpoints and some have 
met with a degree of partial success. 

Besides requiring a reasonable agreement with the results of reliable microscopic 
calculations, one should also require (i) theoretical consistency of the model and (ii) 
satisfactory agreement with the key features of experimental evidence. The theoretical 
issue concems the matching boundary conditions at the interfaces and the field equation on 
which the analysis is based. In a problem involving a mechanical vibrational field and an 
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electrostatic field, theoretical consistency requires mechanical continuity-i.e. continuity 
of vibration amplitudes and ‘forces’ [I61 transmitted normally to the interfaces-and 
electrostatic continuity-i.e. continuity of the potential and of the normal component of 
the electric displacement vector. The most important type of experimental information 
comes from Raman scattering data, which provide direct information on the eigenmodes 
of the system under study. Data are available for a wide range of superlattices, especially 
GaAs related, and they suggest the existence of essentially two types of mode, namely those 
with amplitudes mainly concentmted in one of the constituent materials [17-191, which are 
usually termed confined modes, and those with amplitudes somewhat tending to concentrate 
at the interfaces 120, 211. The character of these modes is inferred somewhat indirectly, as 
the Raman scattering data do not give the spatial dependence of the amplitudes. This point 
will be discussed later. However, the geometly of the Raman scattering experiment can be 
chosen [22] in such a way that modes with different symmetries can be selectively excited. 
This provides direct evidence on a key feature of the eigenmodes under study. 

It is well known that models of the dielectric type achieve electrostatic continuity but 
at the expense of producing mechanical discontinuity. Moreover, the symmetry pattem 
is in contradiction with experimental evidence. On the other hand, models of a rather 
more ‘hydrodynamic’ type or similar achieve mechanical continuity and predict the correct 
symmetry pattem, but they yield a discontinuous electrostatic potential. Sometimes [5, 151 
this is remedied by imposing artificially forced ad hoc matching conditions and in any case 
assuming a vibrational field which is purely longitudinal. The latter is actually an unjustified 
approximation, as the matching at the interface in general always mixes longitudinal and 
transveme polarizations [14, 23, 241. The only w e  in which this decoupling is strictly 
correct is when K 2 0. 

A theoretical formulation which meets all requirements was discussed in [I61 and it 
was shown that there is no incompatibility in achieving mechanical and electrical continuity 
simultaneously provided that (i) one keeps the vibrational field U quite general, as the sum of 
a longitudinal field UL(VAUL = 0) and a transverse field UT(V-UT = 0) and (ii) one takes 
full account of the coupling between the mechanical field ?A and the electrostatic potential 
q. The purpose of the present paper is to solve fully the system of coupled differential 
equations derived in [I61 and to give and discuss the explicit solutions for U and (0. 

Section 2 summarizes the theoretical model and presents the method employed for 
solving the differential system, as well as the fitting procedure for the input parameters 
used in the calculations. Some selected results are presented in section 3 for a GaAs-based 
quantum well and final comments are made in section 4. 

2. Theoretical and practical aspects of the model 

Let us consider a medium where U(T, f) is the relative displacement and V ( T ,  t )  is the 
scalar potential associated with the electric field E = -Vv. In the long wavelength 
phenomenological model we have a mechanical equation of motion for U which is of the 
form 

The harmonic oscillator part is contained in the first term. The second term has the nature 
of a dispersive mechanical term and for an isotropic medium is of the form 
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where Vi = a/ani and BL and are adjustable parameters. The sign of (2) is opposite to 
the usual one for acoustic waves on account of the negative dispersion of the optical modes. 
Crystalline anisotropy can be equally included but here we shall discuss the isotropic case 
[25]. The third term measures the effect of the coupling between the U and p fields 
on the equation of motion for 2L-a factor p is missing in [16] in the definition of U'. 
Simultaneously we have a Poisson equation for y? which reads [16] :~ 

v2p= 43Iyv. U y = I y / E m .  (3) 
The physical meaning of this is that p is created by the polarization charge p, = V P of 
the polariktion field given by: 

P = Iyu + [(Em - l)/47c]E =cm - [(Em - 1)/43I]Vp. (4 j 
The term on the RHS of (3) measures the effect of the coupling between the @ and U fields 
on the field equation for 'p. Of course we aie working in the quasi-static limit '(c + CO) 

which is fully justified for the situation~under study. 
The situation 'is similar to that of the theory of piezoelectric waves; as indeed Was 

originally stressed by Born ,and Huang [26] and.the only general way to obtain a correct 
solution is to solve the simultaneous set of four coupled differential equations. For an 
isotropic bulk homogeneous medium it is possible to obtain independent equations for UL 
and UT and this yields at once decoupled longitudinal and transverse modes with dispersion 
relations 

4 = w + ~  - gk2 (5) 

where IC is the 3d wavevector and U& = o & ( e ~ / c ~ ) .  However, our concem is to study 
the matching'of different media at an interface and  then^ to apply this ta the  study of a 
quantum well structure. For layered structures (1) and (3) should be solved within each 
layer and the solutions appropriately matched at the interfaces. 

Let us first discuss one interface which we take as the plane z = 0. We first Fourier 
transforin in the 2D plane of the interface, so that the odependent vibration amplitudes are 
of the form 

(6) 
where K ,  p are 2D vectors (wavevector and position) respectively. 

We proceed likewise for q and concentrate on u(z) and p(z). These are (0,~)- 
dependent quantities for which, after 2D Fourier transform, we have (0, tcpdependent 
differential equations in the independent variable z. We stress that in general U consists of 
UL and~.w.  

The matching boundary conditions were obtained in [16] and [25].and they are, in the 
variable z, 

2 2  0:. = oZo - BLk 

~ ( p ,  z )  = exp(iK. p ) u ( z )  . .  

Uj(+O) = q - 0 )  q(+O) = qpf-0) Gj(+O) = tzj(-0) ~ ' 

L = 10 Emdq/dz - ~ ~ C Y U ,  = continuous. (7) 
On evaluating these expressions at z = 10 we must account for the different values of 

PL, BT, E, and CY on both sides of the interface. 

equations and eight matching boundary conditions. As in the study of piezoelektric surface 
or interface waves [27] it proves convenient to define a tetrafield 

~ We have four amplitudes (ux ,  U?, U,, p), four coupled second order linear differential 
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which has mechanical and electrical components and to condense the system (I), (3) in the 
form 

& - F = O  (9) 

where L is a 4 x 4  differential matrix which can be readily written down explicitly. Upon 
ZD Fourier transformation L depends on A (w-dependence understood everywhere) and 
contains the differential operator d/dz. A convenient technique for solving this problem is 
the surface Green function matching (SGFM) method [24].  

For each bulk constituent medium one studies the compact differential system (9) and 
defines the corresponding bulk Green function G. After ZD Fourier transformation we have, 
for given o, 

(10) 

where IF is the 4 x 4  unit matrix which, as in the study of piezoelectric interface waves 
[24, 271 consists of a 3 x 3  ‘mechanical unit’ matrix IM and of the ‘electrical unit’ 16. Thus 

L(K,  ~ ) G ( K ;  z - z’) = IFS(Z - 2’) 

1 0 0 0  
0 1 0 0  

0 0 0 1  

After full 3D Fourier transformation we have 

L(ffi, k2) . G(K,  k x )  = IF. 

The problem is then one of ordinary matrix algebra. Inversion of the matrix L(K,  kz) yields 
the matrix G(s, kz ) .  It can then be used for the SGFM calculation where the matching 
boundary conditions (7) are expressed in terms of the corresponding Green Function matrix 
elements and derivatives thereof [24].  

For the isotropic case we can choose K = (0, K) in the y-direction without loss of 
generality. We then find 

LIZ = L13 = Ll4 = Lz, = L3, = Ld] = 0 

L I I ( K .  kJ = p(w2 - 0%) + P&(K~ + k:) 

(13) 

(14) 

so the element 

factorizes out of the full L(n, k,) matrix, leaving us with the inversion of a 3 x 3 matrix 
of elements 

L22 = p ( 0 2  - do) + P&K’ + k:) + P ( B ~  - &)K’ 

La3 = p(o’ - &,) + P&(K’ + k:) + P(@ - B$i: 
L23 = L32 = +P@: - &Kkz 
L24 = -(€m/4iT)L+2 = - b K  

L34 = -(em/4ri)L43 = -iCuk, 
LM = +(K2 + k:). (15) 

Thus we have one transvew vibrational amplitude u,(z)exp(iwy), propagating in the 
y-direction, uncoupled to the rest-this will be discussed later-and two amplitudes 
u y ( z )  exp(iKy) and u,(z)exp(i~y) plus the electrostatic ‘amplitude’ p(z) exp(iry), all three 
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coupled. The wave consists of both the mechanical and the electrostatic excitations 
mutually coupled. A full normal mode calculation yields the full three amplitudes 
( F z ,  F3, F4) = ' ( U , ,  U,, rp) and, having obtained this, we can then study the mechanical 
(U) and electrostatic (9) amplitudes separately. In general the solutions of the 3 x 3 
problem describe a mechanical wave U which is sagittal and has a longitudinal part UL 

and a transverse part UT.. The electrostatic potential (0 and U L  are coupled by the matching 
boundary conditions to UT, thus an electrical vibration rp drives the full mechanical vibration 
U and vice versa. 

The SGFM analysis yields the full Green function G, of the matched system in terms 
of the bulk Green functions Gc of the constituent media (fi  = 1,2). From the full Green 
function GS, we can obtain the dispersion relations W ( K )  and all spectral functions of 
interest, such as the local density of states LDOS. One way to obtain the eigenvalues W ( K )  

is to calculate the roots of the matching secular determinant, which can be written down 
from the projection of the matched G, at the interface. For given 6 this yields a set of 
eigenvalues which, by varying IE, give the desired dispersion relations w ( 6 )  for the normal 
modes. An alternative procedure is to calculate from G, the &resolved local density 
of states N,(w. h, z )  for any convenient value of z, for instance at the interface. The 
eigenvalues O ( K )  are then the frequencies at which the peaks in the density of states appear 
and the dispersion relations are obtained by varying IE. In practice this procedure has often 
proved more convenient than looking for roots of the secular determinant [28] and we have 
found this also to be the case in the present calculation. This has the additional advantage 
that one obtains in the'process the mode density, which is often itself an object of interest. 

The above analysis is extended to the simultaneous matching at two coupled interfaces 
at finite distance. For instance, in a quantum well with two interfaces which we cm~label 
1 (left) and r (right), the central object is the supermatrix 

which contains the local projections at the two interfaces and the cross terms which embody 
the coupling of these. The physical quantities of interest can then be obtained from Gs [24]. 
The algebra for the present calculations was canied out by means of MATHEMATICA [29], 
with which closed-form expressions are obtained for the elements of (16). 

Since we have studied Al,Ga,,-,,As-GaAs systems, some words about the fitting 
procedure employed to estimate the input parameters are in order. The mass density and 
the background dielectric constants were obtained from a linear interpolation of the values 
for the pure materials-AtAs and GaAs-according to the formulae 1301: 

P ( X )  = 5.36 - 1.60 x (C.g.S.) 
E&) = 13.18 - 3 . 1 2 ~ ~  (e.s.u.) 
E&) = 10.89 - 2.73 x (e.s.u.). (17) 

However, this type of interpolation would not work for WLO, WO, BL and BT. It has 
been strongly argued on the basis of experimental evidence [31] that the ternary compound 
AI,Ga,l-,,As can be described in the two-mode model. We shall adopt this viewpoint and 
comment later on it. It then follows that if we study the matching to GaAs we must assign to 
the temary alloy the values of the frequencies for the LO and TO modes found experimentally 
for the GaAs-like modes in this alloy 1311 

O L O , G ~ A ~ ( X )  = 292.37 - 52.83 x + 14.44 x 2  

W . G ~ A ~ ( X )  = 268.50 - 5.16 x - 9.36 x* .  (18) 
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Here and henceforth o is always given in cm-'. 
parameters are not usually reported in the literature and they are not 

known for the different types of mode in alloys. We have estimated their values for the 
pure materials (x  = 0, x = I )  from the experimental curves of [31]. 

We have also made the following assumption: for very low (high) concentrations of 
AI, that is for x N O(x N I), we take dispersion laws with = 0 for the AlAs(GaAs)-like 
modes. This assumption relies on the fact that for these situations the atoms in question are 
isolated and their phonon branches must be flat. For B given concentration x ,  we perform 
a linear interpolation between the values for x = 0 and x = 1. With o in cm-', B is 
dimensionless and we obtain 

The BL and 

BL.Gaks(X) 2 = 2.91 (1 - x )  10-12 B$,Ge,(x) = 3.12 (1 - x )  IO-'' (19) 

This interpolation is admittedly gratuitous. In fact we tested that the values of these 
parameters are altogether rather unimportant. 

Figure 1. LWS at the interfaces of the quantum well 
described in lhe text. LWS in arbitrary units, K = 0, 
o in cm-I. All subsequent figures pertain to the Same 
well. 

Figure 2. Dispersion relations for the eigenmodcs 
obtained by staning from the eigenvalues (in cm-') of 
figure 1 and varyingx (in IO6 cm-I). Note the splilling 
of the degeneracy of the modes m = 6 and I for K # 0. 
These two modes merge in one single pe& in figure I.  

3. Results 

In [I81 a GaAs well of width d = 20 with Alo.gGao.lAs outside has been studied 
experimentally. We shall concentrate mainly on this well and characterize Fully all the 
relevant physical features of the results. Figure 1 shows the (LEOS) at the 1 or r interface, 
covering the range from wo(GaAs) down to below ~ o ( G a A s )  for K = 0. The actual 
calculations have in fact been performed for K = IO-' cm-' for simple reasons of 
computational convenience, but for all practical purposes this can be taken as K = 0 and 
it will be henceforth indicated as such. A small imaginary part was added to U,  so 6- 
functions become in practice the peaks shown in the figure. By repeating the calculation 
for different values of K we obtain the dispersion relations shown in figure 2. We label the 
different eigenmodes by a discrete label m = 1.2, . . .. We ascribe m = 1 to the highest 
mode, so m grows on decreasing frequency. For the first few values of m, in the range 
close to WLO(G~AS), the eigenvalues do not differ significantly from those obtained for the 
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rigid-barrier model [SI from the formula 

(20) mi=&, -&m 2 2 2  r / d .  2 

This will be commented on later. 
There IS also a continuum for much lower frequencies (o 5 255 cm-') but this is just 

an artifact of the model in which a quadratic dispersion law gives a constantly decreasing 
frequency with no cut-off. These frequencies are outside the range of physical interest. The 
artificial DOS for these low frequencies does not affect the results in the range of physical 
interest. 

We note that the modes m = 6 and 7 are degenerate when IE is strictly zero, but this is 
resolved even for very small values of K .  We have concentrated mainly on the range of K 

from zero to values of the order of lo7 cm-', which represents a very small fraction Of the 
Bnllouin zone and yet spans the range of physical interest. We stress that the labelling of 
the eigenmodes by increasing m on decreasing frequency holds for all K ,  either before or 
after the crossovers seen in the figure. 

V 

Figure 3. Spatial dependence of the mechanical (U*:  LHS) and eleclrical (rp: WS) amplitudes 
for x = 0, moder m = 1.2.3. The mode number is indicated in brackets and the abscissa 2 is 
in h 

Firstly figure 3 gives the non-vanishing amplitudes as a function of z, for K = 0, for 
the first three modes (m = . I ,  2,3). It Was noted above that the amplitude U*. factorizes 
out. The calculation evaluates u,-which t u n s  out to vanish-and the mechanical (U,) and 
electrical (a) amplitudes, shown in the figure. Note that with the geomehy here chosen the 
curl of U has the only non-vanishing component 

while 
(V A u ) ~  = iKul - du,/dz 

V * U = iKuy + du, fdz. 

(21) 

(22) 

With uy = 0, which is the case in figure 3, only the first term on the RHS of (21) survives 
and this vanishes for K = 0, while V . U # 0 always. Thus these modes are. longitudinal, 
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but this is strictly so only for K = 0. Modes 4 and 5 follow the same pattern and need not 
be discussed. 

The results shown in figure 3 are given in arbitrary units, so some words are in order 
concerning the normalization convention used here. This has been chosen so that the value 
of U, at one of the interfaces-which we always take to be the r interfaceis equal to unity 
for each mode, thus the amplitudes for the different modes are plotted with different scales. 
This is done to facilitate the visualization of the key features of the amplitudes displayed 
in the figure. In these units pl(r) =4 x 
To put it more intuitively, when uz(r) = 0.01 A for m = 1, then eq(r) N 280 meV, 
while form = 2 ep(0) N 210 meV when U&-) = 0.01 A, in line with the predominantly 
electrical character of mode m = 1, as will be discussed presently. The latter results for the 
frequency eigenvalues are in good agreement with experimental data [ I Q  There is a small 
systematic difference in the absolute values, which could be easily accounted for by a small 
inaccuracy in the determination of the well width. The symmetry pattem-for instance the 
parity of the electrostatic potential-follows the sequence odd (m = 1)leven (m = 2)lodd 
(m = 3)/ ... and the values of 'p outside the well vanish for the even modes and are 
nonvanishing constants for the odd ones. These facts are in agreement with experimental 
evidence [ 181, as well as with the results of microscopic calculations [4, 51 and even with 
those obtained from a rigid-barrier model [8]. 

We also note that the vibration amplitude U, in figure 3 does not vanish at the interfaces, 
where its magnitude is actually quite significant, again in agreement with microscopic 
calculations [4, 51. Outside the interfaces U, decreases very fast, typically over a distance 
of a few A, and then vanishes. This is interestingly related to the nature of the model and 
bears out the fact that it is not only the matching boundary conditions that matter, but also 
the mathematical structure of the differential operator. By keeping both fields (U and p) in 
the 4 x 4 differential system, the differential operator-for given o, K and as a function of 
k,-has the two types of pole, namely (a) those of an electrical nature, at k, = &iK, and 
(b) those of a mechanical nature, at k,  = &QL and k, = &QT , where 

rpz(0) = -3 x and o ( r )  = 3 x 

(23) 
1 112 

QL.T = (. + - m?,O.TO] /&.T} ' 

The former give spatially dependent amplitudes that go as exp(-clrl), which do not decay 
for K = 0, while the latter give outside the well a spatial decay going as exp {-QL,&~],  
if z is measured from the interface one studies. The fast decay of ui outside the interfaces 
seen in figure 3 is due to this and has a decay length of the order of I/QL, since the modes 
are purely longitudinal. 

Let us discuss the crossover of modes 1 and 2 in figure 2. For K c K, (the crossover 
value of K )  the first mode is the more dispersive, while for K > K~ the more dispersive branch 
has become the mode m = 2. The clearest way to characterize these modes is to separate 
out from the LDOS the spectral strengths corresponding to the electrical and mechanical 
excitations. In the present calculation this is done by separating out the contribution of 
the fourth diagonal element of the Green function G,. Figure 4 presents the electrical and 
mechanical spectral strengths for the lirst two modes in the neighbourhood of K ~ .  Figures 
4(a) and 4(h) are given for K c K= while 4(c) and 4(d) correspond to K > K ~ .  It can be 
seen from figure 4 that the first mode for low values of K is mainly due to the electrical 
pole, while the second mode is mostly mechanical in origin, nevertheless both have a mixed 
character. In contrast, for K > K,, the first mode is mostly mechanical-figure 4(d)-while 
the second mode is mostly electrical-figure 4(c). 

The changes in the character of the modes can be further seen by comparing figures 3 
and 5. The latter shows ui and p as function of z for m = 1,2,3, when K > K,. There 
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i o  1 i b l  

Figure 4. Electrical (U,  c) and mechanical (b, d )  specwl strengths for the upper and lower 
modes in the immediate neighbourhaod of the c~ossover beween modes m = 1 and m = 2. 
x = 1 . 1  x cm-' for (a. b) and x = 1.4 x 106 cm-1 for (c. d) .  ~pecual sirenglhs are in 
arbitrary unis  and w in an-]. 

Figure 5. As figure 3, for I = 2 x 106 cm-', with z extending up 10 i60 A. 

is a small luyl << ju,I which is not displayed. Explicit evaluation shows that IV A a1 is 
still much smaller than IV . ul, so these modes are still in practice quasi-longitudinal for 
this low value of K .  The amplitudes are shown again in different scales, so that the key 
features can be visualized. The comments and conventions made in connection with figure 
3 also apply here. In particular, uI(r )  is always equal to unity and then, in these units, 
'pl(0) = -2.6 x 

The information in figures 3 , 4  and 5 shows how the parity of 'p and the predominance 
of electrical or mechanical character are interchanged at K = rc,. If WO denotes even/odd 
z-dependence, then the panty sequence for 'p, to 'ps is 0, E, 0, E, 0 when K < K~ and it 
changes to E, 0, 0, E, 0 when K > K ~ .  This range appears to be experimentally inaccessible to 

'pz(r) = 7.6 x and a ( r )  = 6.0 x 
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Raman scattering, but the analysis suggests that a careful description of the mixed character 
of the normal modes of the 4x4 differential system is necessary in order to have a firm 
theoretical basis for the study of the electron-phonon coupling when not so small values 
of K are involved, as may be the case with mobility calculations. The point is that the 
electronic wavefunctions in a symmetric quantum well have definite parities. 

Figure 6. This figure describes the nature of the mode having predominant electrical character 
before and &er the crossover of branches 5 and 6 of figure 2. The mechanical and electrical 
amplitudes on the left are for K = 10 cm-I and corespand lo the mode m = 6. while on the 
right they are for x = 2 Y IO6 cm-' and correspond to the mode m = 5. Note the different 
scales for z which ranges beween i15 A on the left and if3 A on the right 

Now, it can be seen from figure 2 that there are two very dispersive modes. The 
mode m = 6 (starting from K = 0) originates the second crossover with mode m = 5 
for low K .  The system of eigenmode branches presents two modes (for every K )  which 
have predominantly electrical character. These are m = I and m = 6 for K < K ~ .  while 
for K > K, they correspond to m = 2 and m = 6. In the case of modes 5 and 6 the 
electrical and mechanical spectral strengths are also transferred in the manner of figure 
4. Figure 6 shows the spatial dependence of uy ,  uZ and q for K before (m = 6) and 
after (m = 5) the crossover, that is, following on the predominantly electrical mode. We 
find that u,(z) and q(z)  are even while U&) is odd in both cases. With the same units, 
conventions-u,(r) = 1 always-and different scales as employed for figures 3 and 5, 
uy(r) = -1.3 x IO-* for m = 6 and uy(r) = 6.7 x for m = 5, while q(r) = 65.5 for 
m = 6 and&) = 1.3 x 

These results characterize the different eigenmodes by direct evaluation of several well 
defined physical features, avoiding the question of the names sometimes assigned to them, an 
issue which is far less significant and which often leads to semantic confusion. For instance, 
if we consider the two very dispersive modes we note that (i) the predominantly electrical 
character stays with them-meaning that we start with m = 1 or 6 and then follow with 
m = 2 or 5-d (ii) the electrostatic potential has a tendency to accumulate amplitude 
around the interfaces, and then decays exponentially outside the well. In figure 6, for 
instance, this is more visible in modem = 5 because of the larger value of K .  Qualitatively 

form =5. 
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speaking mode 6 behaves in the same manner, but a small amplitude oscillation inside the 
well is not appreciable on the scale of the figure, and also the exponential decay is very 
slow for very small K .  Thus the modes having predominantly electrical character can be 
identlfied with the interface modes. The same calculation for just one interface yields only 
one such mode. When the symmetric quantum well is formed the two degenerate modes 
corresponding to the two interfaces split into the two interface modes of opposite parities. 
The consequence of the symmetry of the system is that each amplitude by itself has a 
definite parity. The vibration amplitude U, is decoupled from the other amplitudes, and U,, 

uy and 'p are related. The functions uy(z) and ~ ( z )  always have opposite parity to that of 
u,(z) (see figures 3, 5 and 6). We can compare the parities of different modes by refemng 
only to the parity of one of the amplitudes, for which we choose (~(2). 

Now, if the modes were all purely longitudinal, then the first one would simply cross the 
second one, which has opposite parity, without mixing, while it would mix strongly with 
the third one which has again the same parity; the repulsion between the corresponding 
dispersion branches is clearly seen in figure 2. For K # 0 the longitudinal and transverse 
parts are in principle coupled, and mode mixing takes place between modes 1 and 2 on 
one hand and 5 and 6 on the other hand In the case of K Y K, a strong mixing of the 
longitudinal and transverse polarizations form = 5 and m = 6 takes place, where the terms 
1V A U\ and IV .U\ are comparable. At K = 0 mode 5 is totally longitudinal and mode 6 
is totally transverse. 

The modes m = 7.8.9, 10 are strictly transverse and purely mechanical for all K ,  as 
they have only the amplitude U,. The parity sequence of U,@) for these modes is E, 0, 
E,. . ., with very similar features and interpretation in terms of QT instead of QL (23). 

4. Final comments 

The main point of [16] was that a correct formulation of the phenomenological model for 
long wavelength polar optical phonons meets without contradiction all matching boundary 
conditions. For this it is essential to take proper account of the coupling between the U 

and 9 fields. This paper bears this out by explicit solution of the 4 x 4 differential system 
which is required for a proper treatment of the two coupled fields. 

The resulting waves, in the range of quasi-longitudinal modes, have therefore mixed 
nature and we have characterized this by evaluating the electrical and mechanical 
contributions to the total spectral strength. This bears out the transfer of character at 
the crossovers. The modes in this range are, as we have seen, quasi-longitudinal, but it is 
essential for a correct treatment of the problem to treat formally the full vector U as having 
longitudinal and transverse parts. This is particularly important in the range where mode 
5, the lowest of the quasi-longitudinal modes, soon mixes very strongly with the initially 
transverse mode 6. 

The model also gives the shear horizontal modes below the transverse threshold. 
Furthermore, there are two very dispersive modes of predominantly electrical 

character-figure 2, modes m = I ,  6 for K = @-which cut across the others, originating 
crossovers with corresponding mode mixing. By studying the spatial dependence of p(z) 
we can identify at all K the two modes, which are usually termed interface modes, for which 
the label m changes as K increases and the corresponding crossovers take place. 

Thus we have obtained a satisfactory theoretical basis for the study of electron-phonon 
interaction in quantum wells in terms of a comparatively simple phenomenological model. 
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